Llama 4 Local Setup: Run Meta's Multimodal AI on Your PC
Before we dive deeper...
Get your free AI Starter Kit
Join 12,000+ developers. Instant download: Career Roadmap + Fundamentals Cheat Sheets.
Llama 4 Model Comparison
Quick Start:
ollama pull llama4-maverick
ollama run llama4-maverick
What's New in Llama 4
Meta's Llama 4, released in early 2026, represents a major leap forward:
Key Features
| Feature | Llama 4 | Llama 3.1 |
|---|---|---|
| Architecture | Mixture of Experts | Dense |
| Multimodal | Yes (vision + text) | Text only |
| Context Window | 10M tokens | 128K tokens |
| Efficiency | 17B active params | Full model active |
| Languages | 200+ | 8 |
Model Variants
Llama 4 Scout - The efficient option
- 109B total parameters, 17B active
- Ideal for most local deployments
- 12GB VRAM (Q4 quantization)
- 45 tokens/sec on RTX 4090
Llama 4 Maverick - The balanced choice
- 400B total parameters, 17B active
- Best quality-to-resource ratio
- 24GB VRAM (Q4 quantization)
- 38 tokens/sec on RTX 4090
Llama 4 Behemoth - The research giant
- 2T total parameters, 288B active
- State-of-the-art performance
- 128GB+ VRAM required
- Enterprise/research deployments
Local Setup Guide
Step 1: Install Ollama
# macOS/Linux
curl -fsSL https://ollama.com/install.sh | sh
# Windows - download from ollama.com
Step 2: Pull Llama 4
# Scout (12GB VRAM)
ollama pull llama4-scout
# Maverick (24GB VRAM) - Recommended
ollama pull llama4-maverick
Step 3: Run and Test
ollama run llama4-maverick
Test multimodal:
>>> Describe this image: /path/to/image.jpg
Step 4: Configure for Performance
Create a custom Modelfile:
cat > Llama4Modelfile << 'EOF'
FROM llama4-maverick
# Optimal settings for local use
PARAMETER num_ctx 8192
PARAMETER temperature 0.7
PARAMETER top_p 0.9
SYSTEM "You are Llama 4, a helpful AI assistant with vision capabilities."
EOF
ollama create llama4-custom -f Llama4Modelfile
Hardware Requirements
VRAM Requirements
| Model | Q4_K_M | Q5_K_M | Q8_0 | FP16 |
|---|---|---|---|---|
| Scout | 12GB | 14GB | 22GB | 42GB |
| Maverick | 24GB | 28GB | 45GB | 85GB |
| Behemoth | 128GB | 150GB | 240GB | 400GB |
Recommended Configurations
| Budget | GPU | Model | Performance |
|---|---|---|---|
| $500 | RTX 4060 Ti 16GB | Scout Q4 | 35 tok/s |
| $800 | RTX 4070 Ti Super 16GB | Scout Q5 | 42 tok/s |
| $1,600 | RTX 4090 24GB | Maverick Q4 | 38 tok/s |
| $2,000 | RTX 5090 32GB | Maverick Q5 | 52 tok/s |
Apple Silicon
| Mac | Memory | Best Model | Performance |
|---|---|---|---|
| M2 Pro 16GB | 16GB | Scout Q4 | 25 tok/s |
| M3 Pro 36GB | 36GB | Maverick Q4 | 22 tok/s |
| M3 Max 64GB | 64GB | Maverick Q5 | 28 tok/s |
| M3 Max 128GB | 128GB | Maverick Q8 | 18 tok/s |
Using Vision Capabilities
Image Analysis
import ollama
response = ollama.chat(
model='llama4-maverick',
messages=[{
'role': 'user',
'content': 'What do you see in this image?',
'images': ['./chart.png']
}]
)
print(response['message']['content'])
Document Processing
# Analyze a PDF page as image
from pdf2image import convert_from_path
import ollama
pages = convert_from_path('document.pdf')
pages[0].save('page1.png', 'PNG')
response = ollama.chat(
model='llama4-maverick',
messages=[{
'role': 'user',
'content': 'Extract and summarize the key information from this document.',
'images': ['page1.png']
}]
)
Code Understanding from Screenshots
response = ollama.chat(
model='llama4-maverick',
messages=[{
'role': 'user',
'content': 'Explain what this code does and identify any bugs.',
'images': ['code_screenshot.png']
}]
)
Benchmark Results
Language Understanding
| Benchmark | Llama 4 Maverick | GPT-4o | Claude 3.5 |
|---|---|---|---|
| MMLU | 88.2% | 88.7% | 88.3% |
| GPQA | 62.4% | 53.6% | 59.4% |
| MATH | 78.3% | 76.6% | 71.1% |
Coding
| Benchmark | Maverick | GPT-4o | Claude 3.5 |
|---|---|---|---|
| HumanEval | 75.3% | 90.2% | 92.0% |
| LiveCodeBench | 38.2% | 33.4% | 38.9% |
Vision
| Benchmark | Maverick | GPT-4V | Gemini 2.0 |
|---|---|---|---|
| MMMU | 73.4% | 69.1% | 75.2% |
| ChartQA | 88.2% | 78.5% | 85.3% |
| DocVQA | 94.2% | 88.4% | 90.8% |
Integration Examples
LangChain Integration
from langchain_ollama import ChatOllama
llm = ChatOllama(
model="llama4-maverick",
temperature=0.7
)
response = llm.invoke("Explain quantum computing simply")
print(response.content)
Open WebUI Setup
docker run -d -p 3000:8080 \
--add-host=host.docker.internal:host-gateway \
-v open-webui:/app/backend/data \
ghcr.io/open-webui/open-webui:main
Access http://localhost:3000 and select llama4-maverick.
Llama 4 vs Competition
| Feature | Llama 4 Maverick | DeepSeek R1 | GPT-4o |
|---|---|---|---|
| License | Open | Open | Closed |
| Multimodal | Yes | Yes | Yes |
| Local Run | Yes | Yes | No |
| API Cost | Free | Free | $5-15/1M tokens |
| Best For | General + Vision | Reasoning | Everything |
Key Takeaways
- Llama 4 brings multimodal capabilities to open-source AI
- MoE architecture enables better quality without more VRAM
- Maverick is the sweet spot for most local users
- 24GB VRAM (RTX 4090) runs Maverick well
- Vision capabilities rival GPT-4V and Gemini
Next Steps
- Compare to DeepSeek R1 for reasoning tasks
- Build multimodal agents with Llama 4
- Set up RAG with vision-enhanced retrieval
- Optimize your GPU for Llama 4
Llama 4 makes enterprise-grade multimodal AI accessible to everyone. With Scout and Maverick running on consumer hardware, the gap between local and cloud AI continues to shrink.
Ready to start your AI career?
Get the complete roadmap
Download the AI Starter Kit: Career path, fundamentals, and cheat sheets used by 12K+ developers.
Want structured AI education?
10 courses, 160+ chapters, from $9. Understand AI, don't just use it.
Continue Your Local AI Journey
Comments (0)
No comments yet. Be the first to share your thoughts!