AI Models

Llama 4 Local Setup: Run Meta's Multimodal AI on Your PC

February 4, 2026
18 min read
Local AI Master Research Team
🎁 4 PDFs included
Newsletter

Before we dive deeper...

Get your free AI Starter Kit

Join 12,000+ developers. Instant download: Career Roadmap + Fundamentals Cheat Sheets.

No spam, everUnsubscribe anytime
12,000+ downloads

Llama 4 Model Comparison

Scout (109B MoE)
17B active params
12GB VRAM • Fast inference
Maverick (400B MoE)
17B active params
24GB VRAM • Best balance
Behemoth (2T MoE)
288B active params
128GB+ • Research only

Quick Start:
ollama pull llama4-maverick
ollama run llama4-maverick

What's New in Llama 4

Meta's Llama 4, released in early 2026, represents a major leap forward:

Key Features

FeatureLlama 4Llama 3.1
ArchitectureMixture of ExpertsDense
MultimodalYes (vision + text)Text only
Context Window10M tokens128K tokens
Efficiency17B active paramsFull model active
Languages200+8

Model Variants

Llama 4 Scout - The efficient option

  • 109B total parameters, 17B active
  • Ideal for most local deployments
  • 12GB VRAM (Q4 quantization)
  • 45 tokens/sec on RTX 4090

Llama 4 Maverick - The balanced choice

  • 400B total parameters, 17B active
  • Best quality-to-resource ratio
  • 24GB VRAM (Q4 quantization)
  • 38 tokens/sec on RTX 4090

Llama 4 Behemoth - The research giant

  • 2T total parameters, 288B active
  • State-of-the-art performance
  • 128GB+ VRAM required
  • Enterprise/research deployments

Local Setup Guide

Step 1: Install Ollama

# macOS/Linux
curl -fsSL https://ollama.com/install.sh | sh

# Windows - download from ollama.com

Step 2: Pull Llama 4

# Scout (12GB VRAM)
ollama pull llama4-scout

# Maverick (24GB VRAM) - Recommended
ollama pull llama4-maverick

Step 3: Run and Test

ollama run llama4-maverick

Test multimodal:

>>> Describe this image: /path/to/image.jpg

Step 4: Configure for Performance

Create a custom Modelfile:

cat > Llama4Modelfile << 'EOF'
FROM llama4-maverick

# Optimal settings for local use
PARAMETER num_ctx 8192
PARAMETER temperature 0.7
PARAMETER top_p 0.9

SYSTEM "You are Llama 4, a helpful AI assistant with vision capabilities."
EOF

ollama create llama4-custom -f Llama4Modelfile

Hardware Requirements

VRAM Requirements

ModelQ4_K_MQ5_K_MQ8_0FP16
Scout12GB14GB22GB42GB
Maverick24GB28GB45GB85GB
Behemoth128GB150GB240GB400GB
BudgetGPUModelPerformance
$500RTX 4060 Ti 16GBScout Q435 tok/s
$800RTX 4070 Ti Super 16GBScout Q542 tok/s
$1,600RTX 4090 24GBMaverick Q438 tok/s
$2,000RTX 5090 32GBMaverick Q552 tok/s

Apple Silicon

MacMemoryBest ModelPerformance
M2 Pro 16GB16GBScout Q425 tok/s
M3 Pro 36GB36GBMaverick Q422 tok/s
M3 Max 64GB64GBMaverick Q528 tok/s
M3 Max 128GB128GBMaverick Q818 tok/s

Using Vision Capabilities

Image Analysis

import ollama

response = ollama.chat(
    model='llama4-maverick',
    messages=[{
        'role': 'user',
        'content': 'What do you see in this image?',
        'images': ['./chart.png']
    }]
)
print(response['message']['content'])

Document Processing

# Analyze a PDF page as image
from pdf2image import convert_from_path
import ollama

pages = convert_from_path('document.pdf')
pages[0].save('page1.png', 'PNG')

response = ollama.chat(
    model='llama4-maverick',
    messages=[{
        'role': 'user',
        'content': 'Extract and summarize the key information from this document.',
        'images': ['page1.png']
    }]
)

Code Understanding from Screenshots

response = ollama.chat(
    model='llama4-maverick',
    messages=[{
        'role': 'user',
        'content': 'Explain what this code does and identify any bugs.',
        'images': ['code_screenshot.png']
    }]
)

Benchmark Results

Language Understanding

BenchmarkLlama 4 MaverickGPT-4oClaude 3.5
MMLU88.2%88.7%88.3%
GPQA62.4%53.6%59.4%
MATH78.3%76.6%71.1%

Coding

BenchmarkMaverickGPT-4oClaude 3.5
HumanEval75.3%90.2%92.0%
LiveCodeBench38.2%33.4%38.9%

Vision

BenchmarkMaverickGPT-4VGemini 2.0
MMMU73.4%69.1%75.2%
ChartQA88.2%78.5%85.3%
DocVQA94.2%88.4%90.8%

Integration Examples

LangChain Integration

from langchain_ollama import ChatOllama

llm = ChatOllama(
    model="llama4-maverick",
    temperature=0.7
)

response = llm.invoke("Explain quantum computing simply")
print(response.content)

Open WebUI Setup

docker run -d -p 3000:8080 \
  --add-host=host.docker.internal:host-gateway \
  -v open-webui:/app/backend/data \
  ghcr.io/open-webui/open-webui:main

Access http://localhost:3000 and select llama4-maverick.

Llama 4 vs Competition

FeatureLlama 4 MaverickDeepSeek R1GPT-4o
LicenseOpenOpenClosed
MultimodalYesYesYes
Local RunYesYesNo
API CostFreeFree$5-15/1M tokens
Best ForGeneral + VisionReasoningEverything

Key Takeaways

  1. Llama 4 brings multimodal capabilities to open-source AI
  2. MoE architecture enables better quality without more VRAM
  3. Maverick is the sweet spot for most local users
  4. 24GB VRAM (RTX 4090) runs Maverick well
  5. Vision capabilities rival GPT-4V and Gemini

Next Steps

  1. Compare to DeepSeek R1 for reasoning tasks
  2. Build multimodal agents with Llama 4
  3. Set up RAG with vision-enhanced retrieval
  4. Optimize your GPU for Llama 4

Llama 4 makes enterprise-grade multimodal AI accessible to everyone. With Scout and Maverick running on consumer hardware, the gap between local and cloud AI continues to shrink.

🚀 Join 12K+ developers
Newsletter

Ready to start your AI career?

Get the complete roadmap

Download the AI Starter Kit: Career path, fundamentals, and cheat sheets used by 12K+ developers.

No spam, everUnsubscribe anytime
12,000+ downloads
Reading now
Join the discussion

Local AI Master Research Team

Creator of Local AI Master. I've built datasets with over 77,000 examples and trained AI models from scratch. Now I help people achieve AI independence through local AI mastery.

My 77K Dataset Insights Delivered Weekly

Get exclusive access to real dataset optimization strategies and AI model performance tips.

Want structured AI education?

10 courses, 160+ chapters, from $9. Understand AI, don't just use it.

AI Learning Path

Comments (0)

No comments yet. Be the first to share your thoughts!

📅 Published: February 4, 2026🔄 Last Updated: February 4, 2026✓ Manually Reviewed

Get Model Release Updates

Be first to know about new models, setup guides, and benchmarks.

Was this helpful?

PR

Written by Pattanaik Ramswarup

AI Engineer & Dataset Architect | Creator of the 77,000 Training Dataset

I've personally trained over 50 AI models from scratch and spent 2,000+ hours optimizing local AI deployments. My 77K dataset project revolutionized how businesses approach AI training. Every guide on this site is based on real hands-on experience, not theory. I test everything on my own hardware before writing about it.

✓ 10+ Years in ML/AI✓ 77K Dataset Creator✓ Open Source Contributor
Free Tools & Calculators