Chroma vs FAISS vs Qdrant vs Weaviate: Vector Database Comparison
Before we dive deeper...
Get your free AI Starter Kit
Join 12,000+ developers. Instant download: Career Roadmap + Fundamentals Cheat Sheets.
Vector Database Quick Pick
Quick Comparison
| Feature | Chroma | FAISS | Qdrant | Weaviate |
|---|---|---|---|---|
| Setup | Easiest | Easy | Medium | Medium |
| Speed | Good | Best | Very Good | Good |
| Filtering | Basic | Manual | Advanced | Advanced |
| Persistence | Yes | Manual | Yes | Yes |
| Scaling | Limited | Manual | Excellent | Excellent |
| GPU Support | No | Yes | Limited | No |
| License | Apache 2.0 | MIT | Apache 2.0 | BSD-3 |
Chroma - Best for Beginners
Setup
pip install chromadb
Usage
import chromadb
from chromadb.utils import embedding_functions
# Create client
client = chromadb.PersistentClient(path="./chroma_db")
# Use Ollama embeddings
ollama_ef = embedding_functions.OllamaEmbeddingFunction(
model_name="nomic-embed-text",
url="http://localhost:11434"
)
# Create collection
collection = client.get_or_create_collection(
name="documents",
embedding_function=ollama_ef
)
# Add documents
collection.add(
documents=["Document 1 content", "Document 2 content"],
ids=["doc1", "doc2"]
)
# Query
results = collection.query(query_texts=["search query"], n_results=5)
Pros: Zero config, in-memory or persistent, great for learning Cons: Limited scaling, basic filtering
FAISS - Best for Speed
Setup
pip install faiss-cpu # or faiss-gpu for NVIDIA
Usage
import faiss
import numpy as np
# Create index
dimension = 768
index = faiss.IndexFlatIP(dimension) # Inner product (cosine with normalized vectors)
# Add vectors
vectors = np.random.random((1000, dimension)).astype('float32')
faiss.normalize_L2(vectors) # Normalize for cosine similarity
index.add(vectors)
# Search
query = np.random.random((1, dimension)).astype('float32')
faiss.normalize_L2(query)
distances, indices = index.search(query, k=5)
# Save/Load
faiss.write_index(index, "index.faiss")
index = faiss.read_index("index.faiss")
Pros: Fastest search, GPU acceleration, handles billions of vectors Cons: No built-in persistence, manual filtering
Qdrant - Best for Production
Setup
# Docker
docker run -p 6333:6333 qdrant/qdrant
# Or Python client only
pip install qdrant-client
Usage
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance, PointStruct
client = QdrantClient(host="localhost", port=6333)
# Create collection
client.create_collection(
collection_name="documents",
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
)
# Add vectors with metadata
client.upsert(
collection_name="documents",
points=[
PointStruct(
id=1,
vector=[0.1, 0.2, ...], # 768-dim vector
payload={"source": "file1.pdf", "page": 1}
)
]
)
# Search with filtering
results = client.search(
collection_name="documents",
query_vector=[0.1, 0.2, ...],
query_filter={"must": [{"key": "source", "match": {"value": "file1.pdf"}}]},
limit=5
)
Pros: Full filtering, excellent scaling, production-ready Cons: Requires Docker or server process
Weaviate - Best for Enterprise
Setup
docker run -p 8080:8080 semitechnologies/weaviate
pip install weaviate-client
Usage
import weaviate
client = weaviate.Client("http://localhost:8080")
# Create schema
client.schema.create_class({
"class": "Document",
"vectorizer": "none", # We'll provide vectors
"properties": [
{"name": "content", "dataType": ["text"]},
{"name": "source", "dataType": ["string"]}
]
})
# Add data
client.data_object.create(
class_name="Document",
data_object={"content": "...", "source": "file.pdf"},
vector=[0.1, 0.2, ...]
)
# Search
result = client.query.get("Document", ["content", "source"]) \
.with_near_vector({"vector": query_vector}) \
.with_limit(5) \
.do()
Pros: GraphQL API, modules for ML, enterprise features Cons: More complex, heavier resource usage
Benchmark Results
Query Speed (1M vectors, 768 dimensions)
| Database | Query Time | QPS |
|---|---|---|
| FAISS (GPU) | 0.5ms | 2000 |
| FAISS (CPU) | 2ms | 500 |
| Qdrant | 5ms | 200 |
| Weaviate | 8ms | 125 |
| Chroma | 15ms | 65 |
Memory Usage
| Database | 100K vectors | 1M vectors |
|---|---|---|
| FAISS | 300MB | 3GB |
| Qdrant | 400MB | 4GB |
| Chroma | 450MB | 4.5GB |
| Weaviate | 500MB | 5GB |
Decision Guide
Learning/Prototyping â Chroma
Maximum Speed â FAISS
Production RAG â Qdrant
Enterprise/Complex Queries â Weaviate
Key Takeaways
- Chroma is perfect for getting started quickly
- FAISS wins on raw performance with GPU support
- Qdrant is the best all-around for production
- Weaviate excels for enterprise with GraphQL and modules
- All work great with Ollama and LangChain
Next Steps
- Set up RAG locally with your chosen database
- Build AI agents with vector memory
- Choose embedding models for your vectors
Vector databases are the backbone of RAG systems. Choose based on your scale and requirementsâall these options run fully locally.
Ready to start your AI career?
Get the complete roadmap
Download the AI Starter Kit: Career path, fundamentals, and cheat sheets used by 12K+ developers.
Want structured AI education?
10 courses, 160+ chapters, from $9. Understand AI, don't just use it.
Continue Your Local AI Journey
Comments (0)
No comments yet. Be the first to share your thoughts!